Application of Feature Subset Selection Based on Evolutionary Algorithms for Automatic Emotion Recognition in Speech

نویسندگان

  • Aitor Álvarez
  • Idoia Cearreta
  • Juan Miguel López
  • Andoni Arruti
  • Elena Lazkano
  • Basilio Sierra
  • Nestor Garay-Vitoria
چکیده

The study of emotions in human-computer interaction is a growing research area. Focusing on automatic emotion recognition, work is being performed in order to achieve good results particularly in speech and facial gesture recognition. In this paper we present a study performed to analyze different machine learning techniques validity in automatic speech emotion recognition area. Using a bilingual affective database, different speech parameters have been calculated for each audio recording. Then, several machine learning techniques have been applied to evaluate their usefulness in speech emotion recognition. In this particular case, techniques based on evolutive algorithms (EDA) have been used to select speech feature subsets that optimize automatic emotion recognition success rate. Achieved experimental results show a representative increase in the abovementioned success rate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms

One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...

متن کامل

A Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation

Abstract   Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...

متن کامل

Novel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection

In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...

متن کامل

A Comparison Using Different Speech Parameters in the Automatic Emotion Recognition Using Feature Subset Selection Based on Evolutionary Algorithms

Study of emotions in human-computer interaction is a growing research area. Focusing on automatic emotion recognition, work is being performed in order to achieve good results particularly in speech and facial gesture recognition. This paper presents a study where, using a wide range of speech parameters, improvement in emotion recognition rates is analyzed. Using an emotional multimodal biling...

متن کامل

Contemporary stochastic feature selection algorithms for speech-based emotion recognition

In this study a class of Multi-Objective Genetic Algorithms (MOGAs) is proposed to select the most relevant features for the problem of speech-based emotion recognition. The employed evolutionary algorithms are the Strength Pareto Evolutionary Algorithm (or SPEA), the Preference-Inspired CoEvolutionary Algorithm with goal vectors (or PICEA), and the Nondominated Sorting Genetic Algorithm II (or...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007